An Analytical Approach of Nonlinear Thermo-mechanical Buckling of Functionally Graded Graphene-reinforced Composite Laminated Cylindrical Shells under Compressive Axial Load Surrounded by Elastic Foundation
نویسندگان
چکیده مقاله:
This paper deals with an analytical approach to predict the nonlinear buckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compressive load surrounded by Pasternak’s elastic foundation in a thermal environment. Piece-wise functionally graded graphene-reinforced, composite layers are sorted with different types of graphene distribution. The governing equations are established by using Donnell’s shell theory with von Kármán nonlinearity terms and three-term solution of deflection is chosen for modeling the uniform deflection of pre-buckling state, linear and nonlinear deflection of post-buckling state. Galerkin method is applied to determine the critical axial compressive buckling load expression, post-buckling load-deflection and load-end shortening relations of the shell. The effects of environment temperature, foundation, geometrical properties, and graphene distribution on buckling behavior of shell, are numerically evaluated.
منابع مشابه
Nonlinear Vibration of Functionally Graded Cylindrical Shells under Radial Harmonic Load
In this paper, the nonlinear vibration of functionally graded (FGM) cylindrical shells subjected to radial harmonic excitation is investigated. The nonlinear formulation is based on a Donnell’s nonlinear shallow-shell theory, in which the geometric nonlinearity takes the form of von Karman strains. The Lagrange equations of motion were obtained by an energy approach. In order to reduce the syst...
متن کاملTorsional Stability of Cylindrical Shells with Functionally Graded Middle Layer on the Winkler Elastic Foundation
In this study, the torsional stability analysis is presented for thin cylindrical with the functionally graded (FG) middle layer resting on the Winker elastic foundation. The mechanical properties of functionally graded material (FGM) are assumed to be graded in the thickness direction according to a simple power law and exponential distributions in terms of volume fractions of the constituents...
متن کاملBuckling Analysis of Rectangular Laminated Composite Plates With An Edge Delamination Under Compressive Load
The buckling analysis of rectangular laminated composite plates with an edge delamination under in-plane compressive loading is performed using the finite element method. Such a plate may be considered as a simplified model of stiffener plates of a stiffened panel. The buckling load and buckling mode are obtained by solving an eigenproblem. In an unconstrained analysis, physically inadmissible ...
متن کاملThermo-elastic behavior of a thick-walled composite cylinder reinforced with functionally graded SWCNTs
In this article, thermo-elastic-behavior of a thick-walled cylinder made from a polystyrene nanocomposite reinforced with functionally graded (FG) single-walled carbon nanotubes (SWCNTs) was carried out in radial direction while subjected to a steady state thermal field. The SWCNTs were assumed aligned, straight with infinite length and a uniform layout. Two types of variations in the volume fr...
متن کاملNon-Linear Response of Torsional Buckling Piezoelectric Cylindrical Shell Reinforced with DWBNNTs Under Combination of Electro-Thermo-Mechanical Loadings in Elastic Foundation
Nanocomposites provide new properties and exploit unique synergism between materials. Polyvinylidene fluoride (PVDF) is an ideal piezoelectric matrix applicable in nanocomposites in a broad range of industries from oil and gas to electronics and automotive. And boron nitride nanotubes (BNNTs) show high mechanical, electrical and chemical properties. In this paper, the critical torsional load of...
متن کاملNonlinear Vibration Analysis of an Euler-Bernoulli Beam Resting on a Nonlinear Elastic Foundation under Compressive Axial Force
This paper studies the nonlinear vibration analysis of a simply supported Euler-Bernoulli beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes concept in the case of three-to-one (3:1) internal resonance. The beam’s governing nonlinear PDE of motion and also its boundary conditions are derived and then solved using the method of Multiple Time ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 2
صفحات 357- 372
تاریخ انتشار 2020-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023