An Analytical Approach of Nonlinear Thermo-mechanical Buckling of Functionally Graded Graphene-reinforced Composite Laminated Cylindrical Shells under Compressive Axial Load Surrounded by Elastic Foundation

نویسندگان

  • Hoai Nam Vu Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam | Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
  • Minh Duc Vu Faculty of Civil Engineering, University of Transport Technology, Hanoi, 100000, Vietnam
  • Ngoc Ly Le Faculty of Fundamental Science for Engineering, University of Transport Technology, Hanoi, 100000, Vietnam
  • Thi Phuong Nguyen Faculty of Civil Engineering, University of Transport Technology, Hanoi, 100000, Vietnam
  • Thoi Trung Nguyen Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam | Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
چکیده مقاله:

This paper deals with an analytical approach to predict the nonlinear buckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compressive load surrounded by Pasternak’s elastic foundation in a thermal environment. Piece-wise functionally graded graphene-reinforced, composite layers are sorted with different types of graphene distribution. The governing equations are established by using Donnell’s shell theory with von Kármán nonlinearity terms and three-term solution of deflection is chosen for modeling the uniform deflection of pre-buckling state, linear and nonlinear deflection of post-buckling state. Galerkin method is applied to determine the critical axial compressive buckling load expression, post-buckling load-deflection and load-end shortening relations of the shell. The effects of environment temperature, foundation, geometrical properties, and graphene distribution on buckling behavior of shell, are numerically evaluated.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Vibration of Functionally Graded Cylindrical Shells under Radial Harmonic Load

In this paper, the nonlinear vibration of functionally graded (FGM) cylindrical shells subjected to radial harmonic excitation is investigated. The nonlinear formulation is based on a Donnell’s nonlinear shallow-shell theory, in which the geometric nonlinearity takes the form of von Karman strains. The Lagrange equations of motion were obtained by an energy approach. In order to reduce the syst...

متن کامل

Torsional Stability of Cylindrical Shells with Functionally Graded Middle Layer on the Winkler Elastic Foundation

In this study, the torsional stability analysis is presented for thin cylindrical with the functionally graded (FG) middle layer resting on the Winker elastic foundation. The mechanical properties of functionally graded material (FGM) are assumed to be graded in the thickness direction according to a simple power law and exponential distributions in terms of volume fractions of the constituents...

متن کامل

Buckling Analysis of Rectangular Laminated Composite Plates With An Edge Delamination Under Compressive Load

The buckling analysis of rectangular laminated composite plates with an edge delamination under in-plane compressive loading is performed using the finite element method. Such a plate may be considered as a simplified model of stiffener plates of a stiffened panel. The buckling load and buckling mode are obtained by solving an eigenproblem. In an unconstrained analysis, physically inadmissible ...

متن کامل

Thermo-elastic behavior of a thick-walled composite cylinder reinforced with functionally graded SWCNTs

In this article, thermo-elastic-behavior of a thick-walled cylinder made from a polystyrene nanocomposite reinforced with functionally graded (FG) single-walled carbon nanotubes (SWCNTs) was carried out in radial direction while subjected to a steady state thermal field. The SWCNTs were assumed aligned, straight with infinite length and a uniform layout. Two types of variations in the volume fr...

متن کامل

Non-Linear Response of Torsional Buckling Piezoelectric Cylindrical Shell Reinforced with DWBNNTs Under Combination of Electro-Thermo-Mechanical Loadings in Elastic Foundation

Nanocomposites provide new properties and exploit unique synergism between materials. Polyvinylidene fluoride (PVDF) is an ideal piezoelectric matrix applicable in nanocomposites in a broad range of industries from oil and gas to electronics and automotive. And boron nitride nanotubes (BNNTs) show high mechanical, electrical and chemical properties. In this paper, the critical torsional load of...

متن کامل

Nonlinear Vibration Analysis of an Euler-Bernoulli Beam Resting on a Nonlinear Elastic Foundation under Compressive Axial Force

This paper studies the nonlinear vibration analysis of a simply supported Euler-Bernoulli beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes concept in the case of three-to-one (3:1) internal resonance. The beam’s governing nonlinear PDE of motion and also its boundary conditions are derived and then solved using the method of Multiple Time ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 2

صفحات  357- 372

تاریخ انتشار 2020-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023